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Abstract: Multispectral light field acquisition is challenging due to the increased dimensionality
of the problem. In this paper, inspired by anaglyph theory (i.e. the ability of human eyes to
synthesize colored stereo perception from color-complementary (such as red and cyan) views), we
propose to capture the multispectral light field using multiple cameras with different wide band
filters. A convolutional neural network is used to extract the joint information of different spectral
channels and to pair the cross-channel images. In our experiment, results on both synthetic
data and real data captured by our prototype system validate the effectiveness and accuracy of
proposed method.
© 2017 Optical Society of America

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (200.4260) Neural networks; (100.4145) Motion,
hyperspectral image processing.
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1. Introduction

Both light field and multispectral imaging are hot research topics in computational photography
for their potential applications on various computer vision tasks and many other scenarios such
as remote sensing. Compared with traditional photography, they provides extra information from
either angular or spectral dimensions of light rays.
Many commercial multispectral cameras capture different channels sequentially by the aid

of tunable filters [1] or push-broom imaging frameworks [2]. Lots of snap-shot hyperspectral
imaging systems [3] such as Computed Tomography Imaging Spectrometer (CTIS) [4], Coded
Aperture Snapshot Spectral Imager (CASSI) [5–9] and Prism-based Multispectral Video Imaging
Spectrometer (PMVIS) [10] have been proposed to capture videos [11]. Besides, 4D light fields
are proposed to simplify the 7D plenoptic function [12–15]and several methods have been
proposed for capturing the light fields for both static and dynamic scenes [16–19]. However,
capturing the multispectral light field is still difficult due to the increased dimensionality of the
problem.

Inspired by Anaglyph 3D theory, i.e., the ability of humans to synthesize full-color stereoscopic
perceptual by encoding binocular views with chromatically complemented color filters (typically
red and cyan), we try to extend the binocular stereo sensing to multi-camera cases for multispectral
light field imaging. The main challenge for this idea is how to pair the heterogeneous images
captured at different views with different color filters. Existing stereo matching algorithms such
as Normalized Cross Correlation (NCC) [20, 21] and hidden Markov tree model [22] cannot
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Fig. 1. This image shows an overview of our system. Our system introduces the stereo
matching method with convolutional neural network and exploits the different spectral
sensitivities of the filter array to reconstruct multispectral light field through the CNN-based
heterogeneous stereo matching and spectral demultiplexing.

handle this problem because they assume the corresponding points in different views share the
same intensities, which leads to the most important fidelity term in the objective function of
their matching algorithm. In the cases that this assumption does not hold, most existing stereo
matching algorithms fail to offer reasonable output.

However, in natural physiological phenomena, we, human beings can handle two heterogeneous
views easily, even without any pre-training. Hence, it implies the solvability of aforementioned
problem, and further more indicates that the intensity fidelity constraint does not play an important
role in human visual system.
Recently, with the development of deep neural networks, tasks that have puzzled computer

scientists a long time but that can be well interpreted by human brains, are perfectly resolved. For
example, Zbontar and Yan [23,24] propose a stereo matching method by training a convolutional
neural network (CNN) to simulate human eye’s behavior for image patch comparison and depth
information extraction from a rectified image pair. Motivated by this work, we attempt to train a
deep network which can handle the heterogeneous stereo matching like human brains do. The
Siamese network (Bromley et.al., 1993), which is composed by two identical or similar sub-
networks, is applied to handle the stereo image pairs [25]. Different channels of images in standard
stereo matching datasets,such as KITTI [26, 27] and Middleburry vision benchmark [28, 29] are
used to generate the heterogeneous training images.
Meanwhile, we present a prototype array system composed of eight cameras using heteroge-

neous wide-band color filters to capture the multispectral light field at the same time. A spectral
de-multiplexing algorithm is proposed to extract 24 spectral channels from eight heterogeneously
filtered trichromatic cameras. In particular, we conduct the stereo matching among different
wideband-filtered images captured at different views by training a convolutional neural network,
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and construct a 24-channel light field with different spectral response curves by warping the
images according to the estimated stereo matching. By delicately designing the broad band
spectral filters, the 24-spectral-channel light field can be computed using the demultiplexing
algorithm [30].
In all, there are three main contributions of this work,e.g., (1) we propose to capture the

multispectral light field using a camera array where each camera is coupled with a heterogeneous
wide-band color filter; (2) we demonstrate a heterogeneously matching algorithm by using
Convolutional Neural Network to simulate human eyes; (3) we present a prototype system with
eight cameras for high quality 24-channel spectral light field imaging to capture both indoor and
outdoor, static and dynamic scenes.

2. Camera array system for multispectral light field imaging

In this section, we present our camera array system using heterogeneous wide-band color filters
for multispectral light field imaging.

Camera array Processing board  PC

Filter

Fig. 2. Camera array configuration.

2.1. System overview

As shown in Fig. 1, we reconstruct the multispectral light field by capturing the heterogeneous
multiview images by using our eight camera array system. Fig. 2 shows the system architecture
of our proposed system, which consists of three main subsystems: heterogeneous cameras,
processing boards (Nvidia Jetson TX1), and a PC. Considering the trade off between the system
complexity and the number of captured channels, without loss of generality, a prototype system
composed of eight cameras are used to take 24 channels per snapshot in this paper. However, the
proposed method can be easily extended to capture light fields with more spectral channels and
viewpoints. We use eight off-the-shelf RGB cameras, e.g., Point Grey GS3-U3-51S5C-C [31]
with 25mm(F/16) lenses, each of which offers spatial resolution at 2448×2048 and temporal
resolution up-to 75 frames per seconds (FPS). These eight cameras are mounted parallelly on a
printed metal stand as a 2×4 camera array to enable us to move them flexibly. Each camera is
connected to a Nvidia Jetson TX1 board for image processing (eg. data compression, ISP and
data storage) before sending it to the PC in either raw/JPEG form or as an MPEG2 video stream.
The PC host controls the system configuration (such as initialization, synchronous triggering)
and data postprocessing (such as image stitching). Eight plastic filters with different color bands
are mounted with cameras (as shown in Fig. 2) to capture spectrally heterogeneous images.
Besides, it is noted that the default white balance must be turned off to avoid the unnecessary
color manipulation during acquisition.
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Fig. 3. Examples of predicted disparity maps on the KITTI 2015 dataset [26, 27] using our
proposed method with different channel inputs (the even rows), as well as the results of
Zbontar et.al. [24] with full-channel inputs (the odd rows). note that objects closer to the
camera have larger disparities than objects farther away, with warmer colors representing
larger values of disparity and smaller values of depth. When taking the single channel as the
input, we try different pairs of RGB channels, and they all get very high similarities.
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Fig. 4. Camera array with heterogeneous wide-band color filters. (a) shows eight qualified
plastic filters used in our prototype camera-array system; (b) respectively illustrates their
spectral sensitivities, which provide enough independent measurements of incoming light
spectrum. The standard spectral response of the Point Grey GS3-U3-51S5C-C camera sensor
array (c) [31] used in our prototype system is shown in (d).

After capturing the spectrally heterogeneous images/videos, the disparity maps between
views can be computed using the proposed heterogeneous stereo matching network and spectral
de-multiplexing algorithm respectively. The rectification is applied before matching to correct
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the system errors. The heterogeneous measurements from different views can be warped to their
correspondences and form 24 wide-band channels of all the views. By applying the spectral
de-multiplexing algorithm on 24-channel images of each view, the final multispectral light field
can be reconstructed.

2.2. CNN-based heterogeneous stereo matching

A convolutional neural network (CNN) based heterogeneous stereo matching algorithm is
developed to compute the correspondences between the heterogeneous multiview images.

2.2.1. Network architecture

We use the same network architecture as presented in [24]. To make the paper self-complete,
we briefly introduce the networks here. The Siamese network [25], i.e., two shared-weight
sub-networks with joint top layers are applied. Two sub-networks are composed of four spatial
convolutional layers, followed by a rectified linear unit for each layer. For each convolutional
layer, 112 3×3 filters are used to extract features. Four fully connected layers with 384 units are
followed to estimate the disparity from the features. Each pixel is computed using a 9×9 patch
where it locates at the center of the template and other positions are filled with neighbors. The
raw outputs of the network still have some errors, especially in low-texture regions and occluded
areas. Thus, a series of post-processing steps, i.e., cross-based cost aggregation, semi-global
matching, a left-right consistency check, subpixel enhancement, a median, and a bilateral filter,
are applied to refine the quality of raw disparity maps.

2.2.2. Model training

With the network architecture aforementioned, we train the model using heterogeneous images
generated from the training datasets of KITTI 2015 [26, 27] and test the model with the testing
dataset of KITTI 2015.

We train the network parameters using image pairs with different color channels. Specifically,
we extract a single channel from the left image of a image pair, and as for the right image, one of
the rest two channels are selected to make sure the input image pair has different channels. By
traversing all the possbile combinations, 200×6 image pairs are generated to train our network.

The results of proposed method with different channel inputs, as well as the results of Zbontar
et.al. [24] with full-channel inputs are shown in Fig. 3. It contains three pairs of examples from the
KITTI2015 dataset [26,27], together with the disparity predictions under two single-color-channel
inputs. Similarity is measured as the percentage of pixels where the two disparity maps differ less
than two pixels. Although the inputs are reduced to single channel, our results are quite similar to
those with full-channel inputs, except for some occluded areas. The results are in accordance
with our expectations since the Convolutional Neural Network mimics the human eye neurons
well and can extract feature vectors more accurately than traditional stereo methods without the
need of intensity fidelity constraint. Therefore, the proposed CNN-based stereo matching method
using anaglyph glasses can potentially work as well as human eyes, and thus we can get the light
field information through camera-arrays comprising multiple single-channel spectral cameras
(realized by placing filters in front of commercial RGB cameras).

2.3. Spectral demultiplexing

Given the camera spectral response, by assuming Lambertian scenes, the imaging model of
proposed heterogeneous camera array system can be expressed as:

pm,k(x) =
∫
Ω

s(λ, x)ccamera
k (λ)c f ilter

m (λ)dλ, (1)
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Fig. 5. (a) Simulated color images captured by 2 × 4 camera arrays with filters in front of
them. (b) Simulated image registration with upper left image as the reference image.We also
measure the Peak-Signal-to-Noise-Ratio(PSNR) for images in different viewpoints, and an
increasing distance between target camera and reference camera decrease the accuracy of
image registration, hence the multispectral reconstruction quality.
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Fig. 6. The comparison of three commonly used optimization methods. These three optimiza-
tion methods converge to the same solution, hence share the same accuracy. Furthermore,
the running time is fastest for conjugate gradient method and slowest for gradient descent
method with iteration steps in the same order of magnitude.

where pm,k(x) is the intensity of pixel x, k ∈ {r, g, b} is the channel index of the image, and m is
the camera/view index, Ω = [400nm, 700nm] is the range of the visible spectrum, s(λ, x) is the
spectral reflectance of scene point x, and ccamera

k
(λ) is the camera response curve of the k-th

channel, c f ilter
m (λ) is the transmission curve of the filter at camera m.

For a multi-camera system with M trichromatic cameras (M = 8 in our system), we can capture
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Fig. 7. Reconstructed multispectral channels of the first (top left) view of our eight camera
array system. We select six single-spectral reflectance from all 24 reconstructed channels
and compare the results with simulated ground truth reflectance.
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Fig. 8. (a) PSNR of simulated CAT image with different parameter σ of additional Gaussian
noise. (b)illustrates both reconstructed and GroundTruth spectral reflectance curves of two
selected points of (a), and pseudo-color images in chosen spectrum marked by dotted line
(586nm for point A, 618nm for point B).

the wideband spectrally multiplexed images with 3 × M channels. By selecting N = 3 × M
spectral channels from the visible spectrum range, we obtain the spectral sensing matrix C
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Fig. 9. Testing results of our proposed method on the light field dataset
ToyHumveeandSoldier captured by Computer Graphics Laboratory in Stanford Uni-
versity. We choose a part of 2 × 4 image arrays from the whole 256 views on a 16 × 16
grid which have been calibrated already.(a) shows simulated light field color images with
filters,(b) simulates image registration of the first(top left)view of the eight images. (c)
illustrates four single-spectral reflectance images from all 24 reconstructed channels warped
to all the views for 100 × 100 red patches in (b).

combining both camera responses and filter transmissions together:

C =


c1,1 c1,2 · · · c3×M,N

c2,1 c2,2 · · · c3×M,N

...
...

. . .
...

c3×M,1 c3×M,2 · · · c3×M,N


, (2)

where C3×(m−1)+k,i denotes the spectral sensitivities of i-th narrowband channel in the k-th
channel of camera m. Specifically, each row of C is the combination of spectral response curves of
both camera sensors and our wideband filters. For a scene point with spectrum s = [s1, s2, ..., sN]T,
we get the discrete version of Eq. (1),

pm,k =

N∑
i=1

C3×(m−1)+k,i · s. (3)

Considering we have m cameras and each of them has 3 channels, the above equation system
can be expressed in a matrix format as:

P = Cs, (4)

where P = [ p1 p2 · · · pN ] is the heterogeneous wideband measurements of a single pixel
(which can be derived by matching the correpondences of the captured heterogeneous images),
and the narrowband spectrum s = [ s1 s2 · · · sN ] can be computed by solving the matrix
with given C.

Eq. (4) is the final formulation that forms the core of our spectral de-multiplexing reconstruction
system, and can be solved by minimizing the following objective function in a least squares sense
with respect to s:

ŝ = arg min
s
| |P − Cs| |2, (5)

where ŝ denotes estimated spectrum from given measurements.
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Since the illumination and surface spectra are generally continuous with seldom sharp edges in
real world, and the surface spectra should be positive all the time, we introduce the smoothness
and non-negative constraints into the objective function to make it an optimization problem:

ŝ = arg min
s
| |P − Cs| |2 + λ | |∇s| |2

s. t . s(i) ≥ 0 f or all i,
(6)

where ∇ is the differential operator, λ is the weight for smoothness constraint, and in our
experiment λ is set to be 0.01 experimentally.
The projected Gradient based method is applied for minimizing this problem. Specifically,

for each iterative step of normal gradient descent, the projecting manipulation is added to keep
the searching inside the feasible region. Considering the speed and convergence properties of
different optimization methods which as discussed in detail in Sec.4.1, we finally apply conjugate
gradient method to solving this optimization problem.

3. Implementation details

3.1. System configuration

Our proposed prototype system consists of eight cameras in two rows. Each row has four cameras
that are placed without any gap, so that the horizontal baseline of proposed system is exactly the
width of the camera (30 mm). As for the vertical space, the eight camera are placed on two rungs
with about 50mm interval, leading to 50mm vertical baseline.

The stereo matching problem assumes all the cameras are placed parallelly. However, in
practice, it is impossible to meet this requirement. Thus, the system calibration and rectification
are required to correct the system errors and make the corresponding points in different cameras
in the same epiploar line. In this paper, we use the camera calibration toolbox [32] to calibrate
the intrinsic and extrinsic parameters. After knowing the stereo camera projection matrices, the
rectifying transformation can be calculated by solving relationships between original projection
matrices and rectified projection matrices with the line through two camera centers as the baseline.
Then,we can rectify the real captured images by applying the rectifying transformation to the
camera array [33].

3.2. Responses calibration and filter selection

Response calibration To make the problem solvable, we need to calibrate the spectral sensitiv-
ities of the camera array with filters employed in our system, in other words, calibrate sensing
matrix C in Eq. (6) since the accuracy of C greatly depends on the detection accuracy of the
eight wide band filters’ spectra. To estimate the spectral curves of filter arrays, we measured
the spectral signals s0 of the Macbeth color chart using a hyperspectral camera (Prism-Mask
Imaging Spectrometer [34]) and s1 of the same color chart with wideband plastic filters covered
in front of the hyperspectral camera. The spectral sensitivities of each filter cf ilter can be obtained
through s1/s0.
The total error of sensing matrix C can be calculated as:

EC =

s1+∆s1
s0+∆s0 −

s1
s0

s1
s0

=

∆s1s0−∆s0s1
s02

s1
s0

= |∆s1
s1
| + |∆s0

s0
| (7)

where | ∆s1
s1 | and |

∆s0
s0 | are both hyperspectral camera’s relative measurement error, which can

be presented by E as upper limit, and thus will be no larger than 2E . That is to say, the total
error EC of sensing matrix C is in a controllable range. Thus, the accuracy of the matrix C only
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depends on the detection accuracy of the hyperspectral camera, which can be further calibrated
by using high-sensitivity hyperspectral camera sensor.

After test, we have chosen a group of eight qualified plastic filters with lowest condition number,
whose spectral curves are plotted in Fig. 4. These eight spectral responses are well-conditioned
and robust to small changes of the inputs in the function, and thus provide enough variance to
solve our problem in Eq. (6). The standard spectral response of the Point Grey GS3-U3-51S5C-C
camera sensor array (Fig. 4(c)) is provided in Point Grey website and can be downloaded directly,
as shown in Fig. 4(d).

Filter selection The premise of our work is that correspondences in different cameras provide
uncorrelated measurements of the spectra of a single point to enable the full reconstruction of
the spectral curve. Thus, the accuracy of reconstruction depends on the correlation between
the spectral sensitivities of different cameras. The best scenario would arise when the spectral
responses of different filters are completely uncorrelated. The worst case would be the spectral
sensitivities of different filters are almost identical. We analyze the spectral sensitivities of
different filters to validate that they provide enough independent measurements of the incoming
light spectrum. About 18 types of plastic filters are tested, and eight of them are selected by
minimizing the condition number of resulted sensing matrix C as shown in Fig. 4(a). From
Fig. 4(b), we can see the selected eight filters has different transmission curves and thus can sense
the spectrum accurately.

3.3. Image registration

As for the two images at different rows and different columns, instead of computing the stereo
matching directly, we introduce the intermediary image to facilitate system calibration and
computation. Given an arbitrary image pair at different rows and columns, there exist two
intermediary images which are at the same row of one input image and at the same column with
the other. By introducing the intermediary images, the corresponding points in arbitrary image
pairs can be matched by the aid of their common correspondences in intermediary images. By
using the intermediary images, any image pairs can be easily aligned and warped without the
need of rectification between images in different rows and columns, which is difficult in these
cases since epipolar lines are neither horizontal or vertical.

By applying the stereo matching between all image pairs, we derive disparity maps between all
image pairs, and thus can warp all the images to any view of eight cameras. In fact, to derive the
whole multispectral light field, all the images are warped to all the views, so that eight 24-channel
images can be derived. Note that if the users are only interested in a certain view, the rest images
do not need to be warped, since the spectral multiplexing can be achieved independently on a
single 24-channel image.

4. Experiments

4.1. Experiments on synthetic data

We first perform experiments on synthetic data to validate our algorithm as well as to analyze the
effect of the number of the cameras. We have synthesized three groups of data using Autodesk
3ds Max software [35] with off-the-shelf 3D models and arranged the simulated cameras 2
inches apart and paralleled so that their fields of views overlap completely about 10 feet from the
array.

(a) Data synthesis To derive the spectral images, the training based algorithm [36] is applied
to generate the spectral images from RGB images directly. Then, the filter transmission curves
and the camera response curves are used to estimate real capture images by using Eq. (3). As is
shown in Fig. 5(a), three examples of multiview images simulated as wideband-filtered RGB
images are presented.
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Fig. 10. Verification experiment using a Macbeth color chart. The results from our method
and the Ground Truth curves of the color checker are compared. We randomly choose six
patches from all 24 color patches of the colorboard and illustrate their both reconstructed and
standard spectral reflectance curves of 24 channels from 450nm to 634nm, with an interval
of 8nm.
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Fig. 11. Real color images captured by our proposed 2 × 4 camera array system with
heterogeneous wideband filters. These two scenes are both captured under indoor iodine-
tungsten illumination and we can obtain the illumination spectra through capturing the
standard white board. we also randomly select several points with different colors and
illustrate their reconstructed 24-channel single-spectral reflectance curves in the rightmost
column.

(b) Image registration We then do image registration for images in different viewpoints. The
registration results of the first view (top left view) warped from all the other views are shown in
Fig. 5(b), and the Peak-Signal-to-Noise-Ratio (PSNR) of warped images are given in the lower
right corner of each images. We can see that the registration quality are much better for the nearer
views than further ones. Since we show the registration results of the top left view, the warping
images from the nearest views, i.e. Row 1, Column 2 and Row 2, Column 1, gives much better
results than the images warped from the furthest views, i.e. bottom right. Besides, we note that
the simulated scenes on the bottom are of complex periodic details and large view changes, and
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thus have worse registration result than other examples.

(c) Optimization Multispectral reconstruction can be solved by minimizing the objective
function in Eq. (6). We have compared three commonly used optimization methods, which are
gradient descent method, conjugate gradient method and least square QR f actorization
method respectively on simulated CAT image, the comparison results are shown in Fig. 6, from
which we can see the three optimization methods converge to the same solution, hence share
the same accuracy. Furthermore, the running time is fastest for conjugate gradient method and
slowest for gradient descent method, so we finally choose conjugate gradient method to solve this
optimization problem considering the tradeoff between efficiency and complexity.

(d) Reflectance reconstruction We reconstruct 24-channel spectral reflectance for each view
by using spectral de-multiplexing algorithm and implement Cubic Spline Interpolation function
on standard trichromatic curves of camera sensor to get discrete distribution of RGB channels (the
discrete value is 24). Then we respectively apply these three 24 × 1 distributions on each single
spectral image to obtain trichromatic channels, and hence convert it into pseudo-color image. By
reconstruct all the eight spectral views, the final multispectral light field is recovered. As shown
in Fig. 7, six selected spectral channels for the first (top left) view of reconstructed results are
presented. The quantitative evaluation of reconstruction errors for spectral reflectance both of
each channel and average in Peak-Signal-to-Noise-Ratio (PSNR) and Structural-Similarity-Index
(SSIM) are given in Table. 1.

To evaluate our algorithm’s dependence on spectral sensing matrix C, we add Gaussian noise
N(µ, σ2) into filter array’s spectra to simulate inaccurate matrix C. The PSNR of simulated CAT
image with different parameter σ are evaluated, as is shown in Fig. 8(a), where the accuracy
of reconstructed multispectral images turns down gradually as parameter σ of Gaussian noise
component increases. In Fig. 8(b), we illustrate both reconstructed and Groundtruth spectral

Table 1. Evaluating multispectral reflectance reconstruction errors from three groups of 2× 4
simulated light field datasets.

Cat

PSNR
(dB)

450nm 458nm 466nm 474nm 482nm 490nm 498nm 506nm
Avg

35.11 34.35 33.28 32.78 32.67 32.36 32.05 31.47
514nm 522nm 530nm 538nm 546nm 554nm 562nm 570nm

30.90
30.67 30.06 29.67 29.91 30.10 30.56 30.91 30.88
578nm 586nm 594nm 602nm 610nm 618nm 626nm 634nm
29.94 29.17 28.71 28.58 28.97 29.59 29.92 30.00

SSIM

450nm 458nm 466nm 474nm 482nm 490nm 498nm 506nm
Avg

0.9246 0.9236 0.9238 0.9231 0.9208 0.9195 0.9164 0.9153
514nm 522nm 530nm 538nm 546nm 554nm 562nm 570nm

0.9118
0.9114 0.9064 0.9049 0.9049 0.9062 0.9090 0.9112 0.9095
578nm 586nm 594nm 602nm 610nm 618nm 626nm 634nm
0.9008 0.8993 0.9012 0.9038 0.9074 0.9107 0.9136 0.9163

House

PSNR
(dB)

450nm 458nm 466nm 474nm 482nm 490nm 498nm 506nm
Avg

35.67 34.73 33.18 32.40 32.31 31.90 31.51 30.55
514nm 522nm 530nm 538nm 546nm 554nm 562nm 570nm

30.94
29.35 28.78 28.09 28.72 29.04 29.87 30.63 31.12
578nm 586nm 594nm 602nm 610nm 618nm 626nm 634nm
30.81 30.37 30.04 29.93 30.36 31.02 31.29 31.10

SSIM

450nm 458nm 466nm 474nm 482nm 490nm 498nm 506nm
Avg

0.8628 0.8679 0.8745 0.8784 0.8779 0.8735 0.8852 0.8887
514nm 522nm 530nm 538nm 546nm 554nm 562nm 570nm

0.8726
0.8832 0.8877 0.8876 0.8874 0.8780 0.8832 0.8830 0.8713
578nm 586nm 594nm 602nm 610nm 618nm 626nm 634nm
0.8499 0.8459 0.8486 0.8600 0.8623 0.8646 0.8672 0.8737

Park

PSNR
(dB)

450nm 458nm 466nm 474nm 482nm 490nm 498nm 506nm
Avg

29.55 29.22 28.21 27.79 27.73 27.50 27.17 26.52
514nm 522nm 530nm 538nm 546nm 554nm 562nm 570nm

26.72
25.87 25.45 25.07 25.33 25.37 25.64 25.71 25.53
578nm 586nm 594nm 602nm 610nm 618nm 626nm 634nm
25.08 25.01 25.36 26.05 27.01 28.12 28.56 28.40

SSIM

450nm 458nm 466nm 474nm 482nm 490nm 498nm 506nm
Avg

0.8385 0.8426 0.8429 0.8430 0.8444 0.8462 0.8442 0.8402
514nm 522nm 530nm 538nm 546nm 554nm 562nm 570nm

0.8223
0.8314 0.8198 0.8125 0.8091 0.8050 0.8017 0.7935 0.7756
578nm 586nm 594nm 602nm 610nm 618nm 626nm 634nm
0.7534 0.7636 0.7921 0.8209 0.8402 0.8540 0.8601 0.8591
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Fig. 12. Multispectral image reconstruction of various light field datasets captured by our
own system under indoor iodine-tungsten illuminations and the detail results of the same
patch in all eight views. We respectively select two single-spectral reflectance from all 24
reconstructed multispectral channels for each scenario, which are rendered as RGB images
using the spectral sensitivities of the Point Grey GS3-U3-51S5C-C camera sensor.

reflectance curves of two selected points of Fig. 8(a), and pseudo-color images in chosen spectrum
marked by dotted line (586nm for point A, 618nm for point B). We can see that although the
overall reconstruction performance remains consistent when matrix C is inaccurate, some areas
such as the cat feet are greatly influenced by noise, as shown in the enlarged rightmost image.

4.2. Experiments on light field datasets

We also test proposed method on the publicly available light field image datasets captured by
Computer Graphics Laboratory in Stanford University using their multi-camera array [17]. As
shown in Fig. 9(a), we use the training based spectral reconstruction algorithm [36] to generate
multispectral light field from the existing light field data with RGB images. Fig. 9(b) shows the
registration results of the first view (top left view) warped from all the other views and PSNR of
warped images are given in the lower right corner of each image. Fig. 9(c) illustrates 100 × 100
reflectance patches in four selected spectral channels(514nm, 528nm, 610nm and 634nm) of
respectively reconstructed results for all eight views. As can be seen, our method accurately
reconstructs multispectral images in each viewpoint.

4.3. Experiments on real data

For the experiments on real data, we captured color images of several indoor scenes under
iodine-tungsten illumination using our prototype camera array system introduced in Section 2.1,
and the resolution of the examples in this paper is 1920 × 1080 that covers nonplanar objects.

We first compare multispectral reconstruction results of our method with ground truth curves
of the standard Macbeth color checker to verify our algorithms and part of the comparison
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results are shown in Fig. 10. As can be seen, the proposed method promisingly reconstructs 24
multispectral images of the classic color checker. It is worth noting that we should remove the
illumination interference first which can be obtained through capturing a standard white board
before recovering spectral reflectance of the scene. Fig. 11 illustrates various scenes under indoor
iodine-tungsten illumination captured by our camera system. We select several typical points(such
as red, blue and green points) from the images and illustrate their 24-channel single-spectral
reflectance curves respectively in the rightmost column of Fig. 11. Meanwhile, we can also
obtain the light field of the same scene simultaneously using these eight commercial digital
cameras. Fig. 12 show several reconstructed single-spectral reflectance patches chosen from all
24 reconstructed channels for all the eight viewpoints, from which we can see images obtained
by different cameras are registrated well except for some planer regions, where the disparity map
may not be accurate enough. So far, we have successfully proved that we can obtain the light field
and multispectral information simultaneously using our heterogeneous camera array system and
algorithms.

5. Conclusion

We have introduced a framework for affordable and easy-to-use multispectral light field imaging
using heterogeneous cameras array system. By exploiting anaglyph theory, multispectral images
can be reconstructed through spectral demultiplexing. The proposed system can flexibly increase
spectral channels by adding more cameras into the camera array. We have demonstrated the
effectiveness and accuracy of our system using various synthesized and real examples.
The work has left out a few issues that deserve to be explored in depth. For example,

accuracy of estimated multispectral images depends severely on the disparity mapping algorithms
using convolutional neural networks in this paper and we hope to do further optimization
in postprocessing of stereo matching in the next step to further improve the performance.
Reconstruction time acceleration is also on the list of our future work.
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